Le LIDAR au service de l’archéologie

Lorsque nous voyageons, nous recherchons une expérience extraordinaire. La fascination des pays lointains tient dans des paysages exotiques, des coutumes mystérieuses et des vestiges des grandes civilisations disparues. Les sites historiques comme Angkor Wat, Machu Picchu et Tikal sont de véritables attractions touristiques d’autant que tous les secrets du passé n’ont pas encore été entièrement dévoilés. A présent, la technologie laser fournit aux archéologues des informations qu’ils ignoraient auparavant. Tout récemment, les nouvelles découvertes sur la civilisation Maya ont bouleversé nos connaissances.

Read more...

Sortir de l'ombre : les espaces extracellulaires du cerveau dévoilés

L'espace extracellulaire (ECS) du cerveau fournit la scène physique et la plate-forme de signalisation où les neurones et cellules gliales jouent de concert. Alors que l'ECS occupe un cinquième du volume cérébral, sa topologie est incroyablement complexe et miniaturisée, défiant les approches d'investigation traditionnelles. L’équipe de Valentin Nägerl de l'Institut Interdisciplinaire de Neurosciences à Bordeaux a développé une méthode basée sur la microscopie à super-résolution pour visualiser l'ECS dans le tissu cérébral vivant et ainsi dévoiler l'une des plus importantes énigmes et frontières de la neuroscience. Cette étude a été publiée le 22 février 2018 dans la revue Cell.

Read more...

Un détecteur en graphène pour les ondes térahertz

Avec leurs applications prometteuses, les ondes térahertz suscitent un fort engouement et demandent l’adaptation de nombreux composants électroniques. Des chercheurs de l’Institut d’électronique et des systèmes, du Laboratoire Charles Coulomb et des universités de Manchester et de Shandong ont développé un détecteur d’ondes térahertz en graphène fonctionnant à température ambiante. Ses performances allient exceptionnelle sensibilité et réduction du bruit. Ces travaux sont publiés dans la revue Nano Letters.

Read more...

Claude Fabre, Prix Léon Brillouin 2018

Ancien élève de l’École Normale Supérieure de la rue d’Ulm, Claude Fabre a soutenu sa thèse de 3e cycle en 1974 sous la direction de Claude Cohen-Tannoudji (Prix Nobel de Physique 1997). Il a ensuite soutenu sa thèse d’État en 1981 sous la direction de Serge Haroche (Prix Nobel de Physique 2012) au Laboratoire de spectroscopie hertzienne de l'ENS, le futur Laboratoire Kastler Brossel, dans lequel C. Fabre a passé la majorité de sa carrière. Ses travaux de thèse ont porté sur des études à la fois expérimentales et théoriques sur les atomes de Rydberg.

Read more...

Alexandre Kudlinski, Prix Fabry - de Gramont 2018

Alexandre Kudlinski a effectué sa thèse au Laboratoire PhLAM de l’université de Lille sur la création de non-linéarités quadratiques dans les verres puis un post-doctorat à l’université de Bath (Royaume-Uni) sur les fibres optiques microstructurées. Il est ensuite nommé Maître de Conférences à l’université de Lille en 2006 puis Professeur en 2016. Il initie une thématique de recherche sur les effets non-linéaires dans les fibres optiques.

Read more...

Patrice Tchofo-Dinda et Pierre Mathey, Prix Arnulf Françon 2018

Le prix Arnulf Françon 2018 a été décerné à Patrice Tchofo-Dinda et Pierre Mathey pour leur ouvrage « Électromagnétisme, ondes et propagation guidée», paru chez Dunod en septembre 2017. Patrice Tchofo Dinda et Pierre Mathey sont enseignants-chercheurs à la Faculté des Sciences et à l’école d’ingénieurs ESIREM de l’université de Bourgogne. Ils effectuent leurs recherches au laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), dans l’équipe Solitons, Lasers, et Communications Optiques.

Read more...

Des vibrations pour mesurer les microfibres optiques

Les nanotechnologies ont miniaturisé les composants électroniques au point qu’ils nécessitent de nouveaux outils de mesure, notamment pour développer des microcircuits photoniques. Des chercheurs de l’institut Femto-ST et du laboratoire Charles Fabry ont utilisé l’effet Brillouin – effet de la fréquence de vibration d’un objet sur la diffusion de la lumière – pour mesurer le diamètre de microfibres optiques grâce à des vibrations sonores.

Read more...

The photoelectric effect in stereo

Lire l’article

L'écriture laser 3D dans le silicium enfin possible

Modifier localement la structure d'un matériau massif à l'aide d'un laser femtoseconde, comme on sait le faire dans le verre ou dans des polymères, est désormais possible dans le silicium. Les chercheurs du laboratoire Lasers, plasmas et procédés photoniques ont réalisé leur expérience avec un laser dans l'infra-rouge émettant des impulsions de 60 femtosecondes.

Read more...

R&D : Amélioration de l’intensité et de la résolution spectrale d’un signal Raman par l’utilisation d’un imageur spectral dénué d'aberration géométrique

La spectroscopie Raman est une méthode, non destructrice et ne nécessitant pas ou peu de préparation d’échantillon, qui permet d’obtenir des informations sur le contenu moléculaire de nombreuses substances. Le signal Raman est néanmoins typiquement plusieurs ordres de grandeur plus faible que d’autres méthodes spectroscopiques complémentaires (spectroscopie d’absorption – en particulier infrarouge, fluorescence induite par laser …) ce qui limite souvent son utilisation. Il existe des techniques permettant d’augmenter considérablement le signal Raman (SERS, spectroscopie Raman résonante, Raman UV) mais celles-ci ne sont pas applicables à tous les matériaux, nécessitent souvent une préparation spécifique et/ou sont coûteuses.

Read more...