Sheaumann Laser récompensé par le M2I2
Le Massachusetts Manufacturing Innovation Initiative (M2I2) a attribué un prix de $2,345,000 à Sheaumann Laser, une entreprise de 30 personnes basée à Marlborough, partenaire de Laser Components et spécialisée dans la conception et la fabrication de lasers et de modules semi-conducteurs pour les applications industrielles, militaires, médicales et les industries graphiques.
Flying optical cats for quantum communication

Strategic collaboration for fast production of bioinspired surfaces

The European research project LAMPAS is working on the world record of fabrication throughput for the production of functionalized surfaces in the domestic appliance market by combining the outstanding characteristics of three laser technologies, being High-Average-Power Ultrafast Lasers, Direct Laser Interference Patterning and Polygon Scanner processing.
Un microlaser émettant de la lumière hélicoïdale
Des chercheurs du Centre de Nanosciences et de Nanotechnologies (C2N) à Palaiseau, avec des collaborateurs du Laboratoire de physique des lasers, atomes et molécules (PHLAM) à Lille et de l’Institut Pascal à Clermont-Ferrand, ont réalisé un laser intégré dont l’architecture novatrice permet d’émettre de la lumière dans des états chiraux, produisant ainsi des tire-bouchons de lumière. Leur design présente l'avantage de permettre de contrôler la chiralité de ces tire-bouchons (d’horaire à antihoraire) à l’aide de techniques optiques simples.
Grand Prix National de l’Ingénierie 2019
Le Grand Prix National de l’Ingénierie (GPNI) récompense, chaque année depuis 2006, une équipe ayant concouru à la conception, soit d’un produit, soit d’un projet remarquable dans le domaine de l’industrie ou de la construction. Ce grand prix vise à mettre en lumière l’ingénierie française dans toute sa diversité et ses composantes et à valoriser ainsi la valeur ajoutée de la prestation intellectuelle d’ingénierie, notamment en termes de recherche et développement et innovation, ainsi que son impact économique et social.
Exploiter la composante magnétique de la lumière grâce aux nanotechnologies
Des chercheurs ont élaboré une nanostructure capable d’accroître le champ magnétique d’une onde lumineuse, ouvrant la possibilité d’observer l’interaction entre cette composante magnétique de la lumière, et la matière.
Des images nanométriques en 3D de molécules dans des tissus biologiques

Il est désormais possible de révéler la position tridimensionnelle de molécules avec des précisions nanométriques au sein d’échantillons biologiques épais. Ces résultats de recherche inédits ont été obtenus par des équipes bordelaises du Laboratoire photonique, numérique et nanosciences - LP2N (CNRS, Institut d’Optique Graduate School et université de Bordeaux), en utilisant un phénomène d’auto-interférences lumineuses (self-interferences en anglais, alias SELFI).
Convertir le spin des électrons en lumière polarisée sans champ magnétique extérieur
Des chercheurs viennent de démontrer l’émission de lumière polarisée circulaire à partir d’une seule boîte quantique sans champ magnétique extérieur. Ces travaux ouvrent la voie à la mise au point de nouveaux dispositifs pour stocker l’information quantique. Au cours de la dernière décennie, un intérêt et un effort de recherche continu ont été consacrés à l’étude de dispositifs émettant de la lumière polarisée, tels les « Spin-Light Emitting Diodes (Spin-LED) ». De tels dispositifs offrent la possibilité de propager l’information contenue dans un bit magnétique sur de longues distances et à grande vitesse. Pour cela, il faut convertir le spin « haut » ou « bas » des électrons en photons polarisés circulairement à droite ou circulairement à gauche, émis par la diode.
Un micro-spectrofluorimètre pour étudier les objets d'art in situ
Pour analyser sans prélèvement la composition des pigments et liants sur des œuvres fragiles et non transportables (enluminures, estampes, peintures murales…), une équipe de l'Institut de recherche sur les archéomatériaux1 et de l'Institut des sciences moléculaires2 a mis au point un spectrofluorimètre portable. Une licence de commercialisation a été signée avec la société Freiberg Instruments.
Couplage inattendu de plasmons
La spectroscopie de perte d’énergie électronique dans un microscope électronique révèle la possibilité d’hybrider deux modes propres plasmoniques d’une même nanoparticule. Il s’agit d’un effet physique qui ne peut être observé dans le cadre de la physique classique (hermitienne).